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Abstract
As a result of the so(2, 1) treatment of the hypergeometric Natanzon potentials
VN a set of potentials related to a given one is determined; these are the
satellite potentials and all belong to the Natanzon class. The set arises as
the result of the action of the so(2, 1) generators on the carrier space of an
irreducible representation. The results are compared to those obtained from
supersymmetric quantum mechanics (SUSYQM) for some Natanzon potentials.
The chains of Natanzon potentials constructed using the idea of a satellite
potential are, in most cases, different from the SUSYQM chains.

PACS numbers: 03.65.Fd, 02.20.−a, 11.30.Pb

1. Introduction

In [1] the so(2, 1) description of the hypergeometric Natanzon [2] potentials VN was presented.
The study of the discrete spectrum led to the result that three parameters (called group
parameters) are required to completely describe the eigenstates. Two of these parameters
correspond to labels of states in a particular irreducible representation (irrep) of so(2, 1): the
eigenvalues q of the Casimir operator and m of the compact generator. The third parameter,
p, labels a particular set of so(2, 1) generators. It is found that in most cases there is one
eigenstate for each value of p and as a result different sets of so(2, 1) generators, each for a
given (allowed) value of p, are necessary to describe the eigenfunctions of VN . It is unusual for
all the eigenstates of VN to belong to a single irrep, so if attention is fixed in a particular irrep,
the states connected by the so(2, 1) generators are, in the majority of cases, associated with
different Natanzon potentials. It is this fact that suggests the definition of a satellite potential.
The construction of the set of satellite potentials associated with a given VN is the subject of
this paper. The term satellite potential is used as in [3].
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The action of the so(2, 1) generators defines a set of potentials which share the property
that the eigenstates connected by them have the same p and q but correspond, in general, to
different energy eigenvalues. If the energy eigenvalues of the states connected by the so(2, 1)

generators are the same, the following question naturally arises: are the so(2, 1) generators
related to the operators in supersymmetric quantum mechanics (SUSYQM)? This is not so
for all the shape-invariant potentials VS [5], as is shown below. It is also proven that the state
reached by the action of the so(2, 1) generators is a Natanzon potential state. This implies
that the Natanzon class of potentials is invariant under this algebra, a result different to the
one obtained in SUSYQM due to the fact that the SUSYQM operators may define a potential
that does not belong to the Natanzon class [8]; this happens for the Ginocchio potential. It is
proven below that the action of the so(2, 1) generators on an eigenstate of a Ginocchio potential
defines a Ginocchio potential only for particular choices of the Natanzon parameters of the
satellite. The potential obtained is still in the Natanzon class and this is obviously different
from the result obtained from SUSYQM.

Since the action of the so(2, 1) generators does not define a potential outside the Natanzon
class, the most general result that can be expected from the definition of satellite potentials
is the determination of a new sequence of Natanzon potentials starting from a given one. In
the majority of cases studied, the set of satellite potentials includes potentials that belong to
a subclass of the original one; this happens for the Rosen–Morse (RM), Pöschl–Teller and
Eckart potentials [6]; the Ginocchio potential may be an exception.

It has to be stressed that so(2, 1) is the underlying algebra in the description of the
Natanzon class of potentials; no other algebraic scheme is necessary to completely describe
the energy spectrum and wavefunctions of this class of potentials. Therefore, the most general
consequence of this algebraic description is that the satellite potentials belong to a, generally,
new sequence of potentials as compared to the one defined by SUSYQM and that all potentials
belong to the Natanzon class. This being so, the aim is to describe as precisely as possible the
sequence obtained by the action of the so(2, 1) generators.

The paper is organized as follows: section 2 gives a brief description of the bound state
sector for the Natanzon potential; in section 3 the satellite potentials are introduced; and
section 4 includes several examples.

2. The so(2, 1) description of the hypergeometric Natanzon potentials

A two-variable realization of the algebra so(2, 1) is used (for details see [1]) with the generators
taken as

e±iφJ∓ = − i(1 + z)

2
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z

∂
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√
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where z = z(r) and z′ = dz/dr . Expressions (1) lead to the Casimir, Q = J0(J0 + 1) − J−J+:

Q = (z − 1)2
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∂2
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The significant result that follows from (1), (2) is the appearance of the parameter p in the
explicit expression for the generators and the Casimir; this constant distinguishes a particular
set of so(2, 1) generators and plays a crucial role in the so(2, 1) description of the Natanzon
potentials.

The physical problem dealt with is the derivation of the discrete spectrum of the
Hamiltonian and to this end the compact operator J0 is diagonalized; the irreps of so(2, 1)
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considered are unitary and therefore infinite dimensional, and of these the relevant one is
the one bounded below (the D+ representation). In this representation the eigenvalue m of
the compact operator is given in terms of the eigenvalue q of the Casimir and the counter
ν = 0, 1, . . . as

m(ν) = ν + 1
2 + 1

2

√
4q + 1. (3)

With the above results, the so(2, 1) description of the Schrödinger equation is defined by (4),
referred to as the master equation:

G(r)(Q − q)�(r, φ) = (E − H)�(r, φ) (4)

where H is the Hamiltonian and q, E are the eigenvalues of the Casimir and Hamiltonian,
respectively. The function G(r) ensures that the coefficients of the second derivatives of
�(r, φ) are the same on both sides. From (4) it follows that, in general, q could be a function
of ν which also labels E; in spite of the fact that p does not appear explicitly in (4), it could
also depend on ν. Each eigenfunction of the Casimir (or equivalently of the Hamiltonian) has
the form

�(r, φ) = exp(im(ν)φ)g (5)

and is also an eigenfunction of the compact operator J0. The function g = g(r) is determined
by solving the master equation.

The set of Natanzon hypergeometric potentials [2] is given by

VN = f z2 − (h0 − h1 + f )z + h0 + 1

R
+

[
a +

a + (c1 − c0)(2z − 1)

z(z − 1)
− 5�

4R

][
z(1 − z)

R

]2

(6)

where (a, c0, c1, f, h0, h1) are the Natanzon parameters and z is a solution of the differential
equation

z(r)′ = 2
z(1 − z)√

R
; (7)

the other symbols that appear in (6), (7) are given by

τ = c1 − c0 − a, � = τ 2 − 4ac0, R = az2 + τz + c0. (8)

The so(2, 1) description of VN(r) is obtained after the explicit expression for the Casimir (2) is
put into a form similar to (6) after use of (7) and the coefficients of the powers of z compared;
this leads to

p(ν) + m(ν) =
√

−aE(ν) + f + 1 = α(ν),

p(ν) − m(ν) =
√

−c0E(ν) + h0+1 = β(ν),√
4q(ν) + 1 =

√
−c1E(ν) + h1 + 1 = δ(ν)

(9)

where α(ν) is shorthand for
√−aE(ν) + f + 1 and similarly for β(ν) and δ(ν). From (3), (9),

p(ν), q(ν), m(ν)—called the group parameters—and E(ν) are determined for each value of ν,
thus fixing a particular position in an so(2, 1) irrep and the energy eigenvalue. This implies that
one eigenfunction of a specific VN (characterized by a particular set of Natanzon parameters)
belongs to the carrier space of an so(2, 1) labelled by p(ν) (see (2)) and in this carrier space
its position is specified by q(ν) and m(ν). From now on p(ν), q(ν) and m(ν) are written as
p, q and m. For any given irrep, it is possible that its states are eigenfunctions of different
Natanzon potentials. The characterization of this sequence of Natanzon potentials is the main
purpose of the present study. The carrier space of a specific irrep is given by

�pqm(r, φ) = exp(imφ)
pqm(r) (10)
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where


pqm(r) = Kzβ(ν)/2 (1 − z)δ(ν)/2 R1/4
2F1(−ν, α(ν) − ν; 1 + β(ν); z). (11)

with K a normalization constant. The energy spectrum is obtained, using (3) and (9), from

α(ν) − β(ν) − δ(ν) = 2ν + 1. (12)

3. Satellite potentials

In this section the possibilities allowed by (9) for fixed values of the group parameters (p, q)
are presented. The study of this situation leads to the construction of the satellite potentials.
The action of the so(2, 1) generators on (11) is the following:

J−�pqm = ν(α(ν) − ν − 1 − β(ν))

1 + β(ν)
�pqm−1

J+�pqm = −β(ν)�pqm+1

(13)

which follow from [7]

2F1(a + 1, b + 1, c + 1; z) = − 1

zb(z − 1)a
[c(c − 1)2F1(a − 1, b, c − 1; z)

− c(zb − c + 1)2F1(a, b, c; z)] (14)

and

2F1(a − 1, b, c − 1; z)

= − 1

(c − 1)
[(b − c + 1)2F1(a, b, c; z) − b(z − 1)2F1(a, b + 1, c; z)]. (15)

It follows from (13) that the action of the so(2, 1) generators on an eigenfunction of a given
Natanzon potential gives an eigenfunction of a different Natanzon potential. In fact, the same
z is present, so a, c0, c1 are unchanged. Since p and q are unchanged and m → m ± 1 (9)
leads to

αS(ν ± 1) = α(ν) ± 1, βS(ν ± 1) = β(ν) ∓ 1, δS(ν ± 1) = δ(ν) (16)

where αS(ν ± 1), βS(ν ± 1), δS(ν ± 1) are obtained from (9) by the replacement f → fS ,
h0 → h0S , h1 → h1S , E(ν) → ES(ν ± 1), which are the Natanzon parameters and energy for
the satellite potential, and ν → ν ± 1. These relations may be used to determine, for example,
the new parameters fS , h0S and ES(ν ± 1) as functions of ν. The freedom in the choice of one
of the parameters is a consequence of having three equations, (16), with four unknowns; we
choose h1S as the free parameter. This is a general situation found in the study of the Natanzon
potentials where usually one parameter is used to fix the asymptotic behaviour at infinity or
the ground state energy of the system.

The potentials to which the eigenfunctions with m ± 1 are associated will be called satellite
to the one related to the eigenfunction labelled by m. The common feature of all these potentials
is that the values of both p and q remain unchanged. It is natural to ask how many satellite
potentials are associated with a given one? Different eigenfunctions of a given Natanzon
potential do not necessarily belong to the same so(2, 1) irrep and therefore for each such
function a certain number of satellite potentials are determined. We fix our attention on one
eigenfunction. It belongs at the same time to the set of eigenfunctions of VN and to the so(2, 1)

irrep. Recall that ν labels the position of 
pqm(r) in the irrep and call λ the label of its position
in the set of eigenfunctions of VN . The above description assigns a set of values of (p, q, m)

in each case and the two sets must coincide; that is,

p(ν) = p(λ), q(ν) = q(λ), m(ν) = m(λ) (17)



Satellite potentials for hypergeometric Natanzon potentials 4273

which imply

λ = ν (18)

so the numerical values of the two labels coincide on the irrep. Therefore, the action of J+

increases both ν and λ and if there is a maximum value of λ for a given potential a finite
number of satellite potentials will be constructed. The maximum value λ depends on whether
the r → ∞ limit is finite or not for each of the satellite potentials.

To complete the answer, consider a Natanzon potential VN one of whose eigenfunctions,
�

ν0
λ0=ν0

, is in the (p, q) irrep; its position in the set of eigenfunctions is λ = λ0 and the one
in the irrep is ν = ν0. The reason for introducing both ν and λ (which may seem redundant
because for this particular function their numerical values coincide) is that, as shown above, the
Natanzon parameters of the satellite to VN depend on those for VN in a way determined by (16);
therefore, these parameters may (and in fact will) be functions of ν. Thus, displacement along
the irrep produces sets of Natanzon parameters that change with ν in such a way that their
numerical values coincide with those for VN when ν = ν0 and those for the satellite when
ν = ν0 ± 1. Moving from one eigenfunction of VN to another keeps ν0 fixed since in this
case the Natanzon parameters do not change. The question now is the following: if �

ν0
λ0=ν0

and �
ν0+1
λ0+1=ν0+1 are in the same irrep, does the same occur for �

ν0
λ0+1 and �

ν0+1
λ0+2? To answer

this question the system (9), (3) is studied, taking the Natanzon parameters for ν = ν0 and
ν = ν0 + 1, replacing ν by λ and comparing the values of p and q obtained for λ = λ0 + 1 (for
ν0) and λ = λ0 + 2 (for ν0 + 1). It turns out that in general these values are not the same; the
analysis described above has to be repeated for each eigenfunction and a new set of satellite
potentials is thus determined.

4. Particular cases

The results that follow include the set of Natanzon parameters for the potential and its
supersymmetric partner and the rule that generates the parameters for the satellite potentials. A
detailed study along the lines presented in this paper has been performed for the Eckart potential
in [6] where it is shown that the satellite potential does not coincide with the supersymmetric
partner.

(1) The Pöschl–Teller II potential in the notation of [9] is

VPT 2 = (A − B)2 − A(A + α) sech(αr)2 + B(B − α) cosech(αr)2. (19)

The Natanzon parameters

a = 0, c0 = 0, c1 = α−2,

f = (2A − α)(2A + 3α)

4α2 ,

h0 = (2B + α)(2B − 3α)

4α2 ,

h1 = (A − B + α)(A − B − α)

α2

(20)

reproduce VPT 2 with z = tanh(αr)2 replaced in (6). From (9), (12) and (20) the energy
spectrum is

E(ν) = −4αν(να − A + B) (21)

while the group parameters are from (9)

p(ν) = A + B

2α
, q(ν) = (A − B − 2να)2 − α2

4α2 , m(ν) = A − B + α

2α
(22)
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and from the definition of α(ν), β(ν) and δ(ν),

α(ν) = α + 2A

2α
, β(ν) = 2B − α

2α
, δ(ν) = −2να − A + B

α
. (23)

Remark. If A and B are kept unchanged, ν is replaced by λ to label the position of the
eigenfunction for a given VPT 2 and λ → λ ± 1, it follows from (22) that p(λ ± 1) = p(λ)

and m(λ ± 1) = m(λ) while 4α2q(λ ± 1) = (A − B − 2(λ ± 1)α)2 − α2. The eigenfunction
labelled by λ ± 1 belongs to a different irrep to the one labelled by λ.

After use of (16), the action of J+ leads to

αS(ν + 1) = 3α + 2A

2α
, βS(ν + 1) = 2B − 3α

2α
,

δS(ν + 1) = −2να − A + B

α
.

(24)

Calling (AS, BS) the parameters of the potential in (23) and equating the result with the values
in (24), we obtain

AS = A + α, BS = B − α. (25)

This is similar to the change of parameters when constructing the supersymmetric partner [4,9].
The energy spectrum for the satellite potential follows from (12):

ES(ν + 1) = E(ν) + α2(1 + h1S) − (A − B)2 (26)

with h1S arbitrary; if the condition that the energy vanishes for ν = 0 is imposed, then

h1S = (−A + B − α)(α + B − A)

α2
(27)

which leads to ES(ν + 1) = E(ν). The result for ES(ν + 1) is not the one encountered in
SUSYQM because the arguments appear in reverse order; this suggests using J− instead of
J+. To check if this is appropriate, the supersymmetric partner is now considered.

The supersymmetric partner of VPT 2, VPPT 2, is obtained from the superpotential [4]
W(r) = A tanh (αr) − B coth (αr) using VPPT 2 =W(r)2 +W(r)′, where W(r)′ = dW(r)/dr ,
with the result

VPPT 2 = (A − B)2 + A(−A + α) sech(αr)2 + B(B + α) cosech(αr)2. (28)

The Natanzon parameters for VPPT 2 are (the subindex p refers to the SUSYQM partner)

a = 0, c0 = 0, c1 = α−2,

fp = (2A − 3α)(2A + α)

4α2

hp0 = (2B − α)(2B + 3α)

4α2

hp1 = (A − B + α)(A − B − α)

α2

(29)

with the same z as before. The energy spectrum is Ep(ν) = −4α(ν + 1)(α(ν + 1) − A + B).
From (21) there follows the standard result for supersymmetric partners: Ep(ν) = E(ν + 1).

Repeating the calculation of the group parameters, we find for the supersymmetric partner

pp(ν) = A + B

2α
, mp(ν) = A − B − α

2α
,

qp(ν) = (A − B − 2να − 3α)(A − B − 2να − α)

4α2
.

(30)
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Also from (9),

αp(ν) = 2A − α

2α
, βp(ν) = 2B + α

2α
, δp(ν) = −2α(ν + 1) − A + B

α
. (31)

Comparing (31) with (22) and (23), the relations between the group parameters of the
potential (19) and its SUSYQM partner are as follows:

pp(ν) = p(ν), mp(ν) = m(ν) − 1,

qp(ν) = q(ν + 1), δp(ν) = δ(ν + 1).
(32)

The results given in (31) should be compared with the basic conditions on the parameters of
the satellite potentials, equations (16) with the lower sign. This implies that δs(ν − 1) = δ(ν);
then from (32) it is seen that δs(ν − 1) = δp(ν − 1) = δ(ν). Using the last equation in (9),
it follows that qS(ν − 1) = qp(ν − 1) = q(ν). The result for pS(ν − 1) for the satellite is,
from (16) and (23), pS(ν − 1) = p(ν). Also mp(ν) = mS(ν) = m(ν). This shows that the
potential reached by the action of J− is the SUSYQM partner. It has to be noticed that this
occurs in this particular case and is not valid in general as the following cases show.

(2) The RM potential

VRM = A2 +
B2

A2
+ 2B tanh(αr) − A(A + α) sech(αr)2 (33)

is obtained from (6) with the Natanzon parameters

a = 0, c0 = c1 = 1/α2,

f = 4
A(A + α)

α2
,

(34)

h0 = (−B + Aα + A2)(−B − Aα + A2)

α2A2
,

h1 = (B + Aα + A2)(B − Aα + A2)

α2A2

(35)

with z = 1/2 + tanh(αr)/2. From (12) the energy spectrum is given by

E(ν) = A2 − (A − να)2 +
B2

A2
− B2

(A − να)2
. (36)

The group parameters are found to be

p(ν) = 2A

α
− m(ν) + 1,

q(ν) = (ν + 1 − m(ν))(ν − m(ν)),

m(ν) = −A2 + να2 − Aα − B + ν2α2

2(να − A)α
.

(37)

Remark. Keeping A and B fixed and replacing ν by λ, it follows that p(λ ± 1) �= p(λ),
q(λ ± 1) �= q(λ) and m(λ ± 1) �= m(λ).

From (9), (37) it follows that

α(ν) = 2A + α

α
,

β(ν) = ν2α2 − 2ναA + A2 − B

(A − να)α
,

δ(ν) = A2 + B + ν2α2 − 2ναA

(A − να)α
.

(38)
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For the satellite potential it is found from (16) that

αS(ν + 1) = 2
A + α

α
,

βS(ν + 1) = A − να

α
− 1 − B

(A − να)α
,

δS(ν + 1) = A − να

α
+

B

(A − να)α
.

(39)

Setting (AS, BS, pS, qS) instead of (A, B, p, q) in (37) with ν → ν + 1 and requiring that
p(ν) = pS(ν + 1), q(ν) = qS(ν + 1), it is found that

AS = A + α/2, BS = − (2να + α − 2A)(να2 − Aα − 2B)

4(να − A)
. (40)

The result in (40) shows that the change in (A, B) is different from the one found for the
supersymmetric partner, since in that case only A changes while B remains the same [4, 9].
The energy of the satellite is found to be

ES(ν + 1) = E(ν) + (h1S − h1)α
2 (41)

with h1S arbitrary.

(3) The Ginocchio potential has Natanzon parameters [4]

c0 = 0, c1 = λ−4, a = λ−4 − λ−2,

h0 = − 3
4 , h1 = −1, f = (µ + 1/2)2 − 1

(42)

and its explicit expression is, after using (6),

VG = − (2µ + 1)2λ4

4(λ − 1)(λ + 1)
− (−λ2 − 2 + 4µ2 + 4µ)λ4

4(−1 + λ2)L
+

(6λ2 + 3)λ4

4(−1 + λ2)L2
+

5λ6

4(−1 + λ2)L3

(43)

with L = z(−1 + λ2)−λ2 and z the solution of (7), whose expression in terms of r is implicit.
The energy spectrum obtained from (12) is

E(ν) = − 1
4

(
2ν + 1 −

√
4λ2[µ(µ + 1) − ν(ν + 1)] + (2ν + 1)2

)2
(44)

and this coincides with the spectrum in [4]. The group parameters obtained from (9) are

q(ν) = −λ4 + E(ν)

4λ4 , p(ν) = µ2 + 4ν2 + µ

2(4ν + 1)
+

E(ν)

2λ2(4ν + 1)
,

m(ν) = ν +
1

2
+

1

2λ2

√
−E(ν).

(45)

Recall that α(ν) = p(ν) + m(ν), β(ν) = p(ν)−m(ν) and δ(ν) = √
4q(ν) + 1, and can easily

be computed from (45).

Remark. As in the previous examples, it is found that for fixed Natanzon parameters and calling
σ the label of one eigenfunction, p(σ ± 1) �= p(σ), q(σ ± 1) �= q(σ ) and m(σ ± 1) �= m(σ).
Now the satellites are constructed. The Natanzon parameters and energy spectrum are obtained
from (16); the result is

−4(λ2 − 1)h1S = 4(λ2 + fS − µ2 − µ) − 5 − 4

λ2

√
λ4(2µ + 1)2 − 4E(ν)(1 − λ2),

h0S = − 3
4 ,

4(λ2 − 1)ES(ν) = 4λ2
√

4E(ν)(λ2 − 1) + λ4(2µ + 1)2

+ 4E(ν)(λ2 − 1) + λ4[(2µ + 1)2 − 4fS]

(46)
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where in this case fS is left arbitrary. The satellite does not belong to the Ginocchio class if
h1S �= −1. If, however, the free parameter is chosen such that h1S = −1, then the satellite is
also a Ginocchio potential; this is the only case considered. Then

fS = (2µ + 1)2

4
+

√
λ4(2µ + 1)2 − 4E(ν)(1 − λ2)

λ2
(47)

which can be cast in the form (42) fS = ( + 1/2)2 − 1 where  is the parameter that replaces
µ in the satellite. The choice h1S = −1 makes the Ginocchio class invariant under so(2, 1)

and therefore an invariant subclass of the Natanzon potentials. The eigenstates connected by
the generators have the same energy eigenvalue, ES(ν) = E(ν), as seen by replacing (47) in
the expression for the energy in (46). The results obtained are obviously different from the
ones from SUSYQM where the actions of the SUSY operators define a series of potentials
that, starting from a Ginocchio potential, do not belong to the Natanzon class [8].

The main conclusion that follows from the above examples is that the chain of potentials
defined by the action of the so(2, 1) generators could be different from the one defined by the
action of the SUSYQM operators and of the potential algebra. It is worth stressing that the
only algebraic structure underlying the study of satellite potentials is the so(2, 1) algebra and
that this algebra does not define a satellite potential that lies outside the Natanzon class; its
most important aspect is the possibility of defining new chains of Natanzon potentials.
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